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Abstract. The mass balance of the Greenland ice sheet is strongly influenced by the dynamics of its outlet glaciers. Therefore,

it is of paramount importance to accurately and continuously monitor these glaciers, especially the variation of their frontal

positions. A temporally comprehensive parameterization of glacier calving is essential to understand dynamic changes and to

constrain ice sheet modelling. However, current calving front records are often limited in temporal resolution as they rely on

manual delineation, which is laborious and not feasible with the increasing amount of satellite imagery available. In this contri-5

bution, we address this problem by applying an automated method to extract calving fronts from optical satellite imagery. The

core of this workflow builds on recent advances in the field of deep learning while taking full advantage of multispectral input

information. The performance of the method is evaluated using three independent validation datasets. Eventually, we apply

the technique to Landsat-8 imagery. We generate 9243 calving front positions across 23 Greenland outlet glaciers from 2013

to 2021. Resulting time series resolve not only long-term and seasonal signals but also sub-seasonal patterns. We discuss the10

implications for glaciological studies and present a first application analysing the interaction between calving front variation

and bedrock topography. Our method and derived results represent an important step towards the development of intelligent

processing strategies for glacier monitoring, opening up new possibilities for studying and modelling the dynamics of Green-

land outlet glaciers. Thus, these also contribute to advance the construction of a digital twin of the Greenland ice sheet, which

will improve our understanding of its evolution and role within the Earth’s climate system.15

1 Introduction

Over the past two decades, the Greenland Ice Sheet has been a major contributor to sea level rise (Horwath et al., 2022). Models

suggest, that this imbalance will continue with a warming climate (Goelzer et al., 2020; Edwards et al., 2021; Rückamp et al.,

2020). About half of the ice mass loss is due to increased meltwater runoff, while the other half is caused by dynamical

imbalance (The IMBIE Team, 2020). While changes in the surface mass balance are forced by the atmosphere, the dynamic20

imbalance is driven by changes at the ice-ocean boundary formed by the outlet glaciers that drain the Greenland Ice Sheet.
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Here, several mechanisms act as controls and indicators for dynamic glacier changes. In particular, calving and calving front

variations have been identified as crucial parameters for investigating the physical mechanisms of Greenland outlet glaciers

(Joughin et al., 2008; Moon and Joughin, 2008; Benn et al., 2017; Trevers et al., 2019; Cook et al., 2021; Melton et al., 2022).

In addition, recent studies have shown that calving front retreat is associated with increased ice discharge (King et al., 2018;25

Mouginot et al., 2019; King et al., 2020). An accurate representation of calving front behaviour is therefore an important

requirement for constraining ice sheet modelling and improving simulations of future mass loss and sea level contribution

(Vieli and Nick, 2011; Bondizo et al., 2017; Morlighem et al., 2017, 2019). Overall, temporally and spatially comprehensive

data products of calving front variation are essential for a better understanding and modelling of marine terminating glaciers.

The steady increase in quality and availability of satellite imagery provides new opportunities for a continuous and accurate30

monitoring of glacier calving front positions. Nevertheless, current data records mostly rely on manual delineation (Schild and

Hamilton, 2013; Joughin et al., 2015; ENVEO, 2017; Andersen et al., 2019; King et al., 2020; Goliber et al., 2022; Black

and Joughin, 2023). This is a laborious, time-consuming and therefore ineffective process, given the ever-increasing volume

of data. Thus, such calving front products often lack temporal resolution, making seasonal analysis and associated modelling

efforts difficult. In response to the need for scalable processing strategies, several empirical feature extraction algorithms have35

been introduced over the last decades, all aiming to provide robust automated calving front extraction (Sohn and Jezek, 1999;

Liu and Jezek, 2004; Seale et al., 2011; Rosenau, 2014; Krieger and Floricioiu, 2017; Liu et al., 2021). Yet, most of these

methods are either not tested for spatial transferability and large-scale application, or require case-specific modifications.

With the advent of deep learning and big data methods in remote sensing, new opportunities have emerged to solve complex

image processing tasks (Zhu et al., 2017). In recent years, a number of case studies have used deep Artificial Neural Networks40

(ANN) to extract calving front positions. Both optical (Mohajerani et al., 2019) and synthetic aperture radar (SAR) (Zhang

et al., 2019; Baumhoer et al., 2019) sensors have been used. Based on this, numerous studies have advanced the ANN architec-

ture (Heidler et al., 2021; Marochov et al., 2021; Periyasamy et al., 2022; Davari et al., 2022b,a; Heidler et al., 2022), assessed

potential input information (Loebel et al., 2022) and pursued the multi-sensor capability (Zhang et al., 2021). In addition, dedi-

cated data products have been developed for training and validation (Goliber et al., 2022) as well as benchmarking (Gourmelon45

et al., 2022) of ANN applications. Cheng et al. (2021) published the first and only automatically generated data product of

calving front locations with a Greenlandic scope.

Building on these achievements, this paper discusses the application and extensive validation of a specially tailored deep

learning method for automated calving front extraction using Landsat-8 optical imagery. In doing so, we provide a data prod-

uct for 23 Greenland outlet glaciers from 2013 to 2021. By exploiting the full multispectral sensor information, we achieve50

a more accurate and robust calving front extraction compared to using only single band inputs. This significantly increases

the temporal resolution of the final product. Thus, the time series of many of the glaciers processed are of unprecedented

temporal resolution, resolving their sub-seasonal calving front variability for the first time. By achieving this robust and com-

prehensive parameterization of glacier calving in Greenland, we meet the glaciology community requirement and make an

important first step towards establishing intelligent processing strategies for glacier monitoring tasks. Overall, we provide the55
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Figure 1. High-level overview of the applied workflow for automated calving front extraction. Based on multispectral satellite imagery

in visible (VIS), short-wave infrared (SWIR) and thermal infrared (TIR) wavelengths, the ANN performs a pixel-wise semantic image

segmentation. The final calving front position is obtained after vectorizing and masking the ANN prediction. Landsat-8 image courtesy of

the U.S. Geological Survey.

wider cryosphere community with a methodology, a data product and implementation as well as a discussion of glaciological

implications that open up new possibilities for studying and modelling Greenland glacier dynamics.

Section 2 introduces the applied deep learning method for automated calving front extraction and gives an assessment of

its accuracy. In Section 3 we present our data product and the derived time series. As part of the discussion in Section 4,

we provide a first application of our results to analyse the interaction between calving front change and bedrock topography.60

Finally, in Section 5 we draw conclusions and provide an outlook.

2 Delineating calving fronts by deep learning

2.1 Neural network processing

For automated calving front extraction, we apply a modified version of the approach published by Loebel et al. (2022). In doing

so, we process multispectral Landsat-8 imagery (Appendix A1) using a specialized ANN (Appendix B). In particular, we use65

a convolutional neural network of the U-Net architecture (Ronneberger et al., 2015) to semantically segment multispectral

imagery into a glacier/land and water class. The glacier calving front, which is described by the boundary between these two

classes, is then extracted by vectorizing and masking the model prediction. Figure 1 gives a broad overview of the processing

workflow. Larger glaciers, exceeding the fixed window size, are processed by separating the region of interest into multiple

independent predictions which are then averaged in the overlapping area prior to vectorization (Baumhoer et al., 2019).70

The associated reference data (Appendix A2), which is instrumental both in training and validating machine learning appli-

cations, is build from manually delineated calving front positions. To train the ANN model we use 698 calving front locations

from 19 Greenland glaciers between 2013 and 2019. As the performance of ANN methods highly depends on training data

we pay special attention to cover a diversity of morphological features, different calving and ice mélange conditions as well as

varying illumination and cloud situations.75
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Figure 2. Overview map of the 23 Greenland glaciers used in the TUD reference dataset. Glaciers marked by a red dot are used for training

and testing. White dots indicate glaciers only used for model testing. Not on this map: Boydell Glacier, Drygalski Glacier, Storbreen Glacier

and Upsala Glacier which are only applied for model testing. The basemap is taken from the QGreenland package (Moon et al., 2022).

2.2 Validation

Our own TU Dresden (TUD) testing set contains 200 labeled images from the years 2020 and 2021. We emphasize that they are

temporally separated from the years of the training datasets. To ensure spatial transferability of our method this validation data

set includes imagery for additional four Greenland glaciers, two glaciers at the Antarctic Peninsula, one glacier in Svalbard and

one glacier in Patagonia. In addition to our own testing dataset we apply another 100 manually picked calving fronts provided80

by the ESA Greenland Ice Sheet CCI project (ENVEO, 2017) and 110 provided by the CALFIN product (Cheng et al., 2021).

Figure 2 gives a spatial overview of the Greenland glaciers used within this study.

The distance between the predicted and the manually delineated calving front is taken as the main error metric in the

validation. This is implemented by averaging the minimal distances between the predicted front trajectory and the manual de-

lineation calculated every 30 m. Figure 3 illustrates some validation results for diverse testing images from the three validation85
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Figure 3. Validation results for example scenes from the (a-f) TUD, (g,h) CALFIN and (i-k) ESA-CCI testing set. Manually delineated

calving fronts are depicted as dashed black lines. The ANN prediction is shown in orange. The mean distance error for the respective scene

is given both in meters and in pixels. All depicted results derive from the same fitted ANN model. Landsat-8 imagery courtesy of the U.S.

Geological Survey.

sets. Along with the manually picked calving front (dashed black) and the ANN delineated calving front (orange) the mean

distance between them is indicated. The ANN model reliably delineates calving front locations under a wide range of ocean,
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Figure 4. Accuracy assessment for the three independent test datasets. Every horizontal line inside the ’violin graphs’ represents one trained

model applied to the test dataset. The vertical extent of each graph is defined by the corresponding minimum and maximum values.

sea ice and ice mélange situations. Furthermore, the model is also able to handle images affected by challenging cloud (Fig. 3d,

j) and illumination (Fig. 3c) conditions, as well as calving fronts near the edge of a satellite scene (Fig. 3e). Validation images

showing large errors are associated to delineation subjectivity (Fig. 3f,h,i) or even human error (Fig. 3k).90

Since the ANN training is stochastic every fitted model performs slightly different on our testing data. To ensure statistical

stability for a broader numerical assessment we train and validate 50 models using the same reference data and model parame-

ters. In order to assess the distance error, we report both the mean and median over the scenes in the test data set. The validation

results for these 50 models are shown in Figure 4. Whereas the mean distance error is sensitive towards outliers the median

distance error informs about systematic model overfitting and general scene-by-scene performance. Since each of the three95

testing data sets originated from its own, hence independent, imagery, resulting error estimates are not directly comparable.

Nevertheless, we suspect that the lower distance error yielded for the TUD testing set is due to the fact that it was generated

by the same people who inferred the training data for these models. For all three testing sets the ANN mean distance error is

below the accuracy level of manual digitization which was estimated by Goliber et al. (2022) to be 107 m using duplicated

delineation from different authors. Altogether, the quality of calving fronts delineated by our ANN model is comparable to that100

of manually delineated calving fronts.
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Figure 5. Temporal coverage of our ANN generated time series. The numbers and the color intensity indicate the amount of processed

calving front positions in the respective year. Glaciers are sorted by latitude from south (left) to north (right).

3 Results

3.1 Data product for Greenland from 2013 to 2021

Having trained and validated the ANN model, we apply our processing to Landsat-8 imagery in order to generate temporally

dense calving front time series for 23 Greenland outlet glaciers. In doing so, we process all but completely clouded Landsat105

scenes acquired between March 2013 and December 2021. Failed calving front extractions, the percentage of which varies

between 5 % and 10 % depending on the glacier, are then manually discarded. Figure 5 gives a tabular overview of the final

data product (for locations see Figure 2). In total, we provide 9243 calving front lines, mostly achieving sub-weekly sampling

outside polar night. Due to overlapping satellite orbits, glaciers in north, northeast and northwest Greenland undergo up to

six image acquisitions per week depending on weather and season. Since we use optical data in this study our time series has110

observation gaps during polar nights. Depending on latitude, this gap lasts about one month for glaciers in south Greenland

and up to three months for glaciers in north Greenland.

3.2 Long term, seasonal and subseasonal calving front changes

Marine terminating glaciers experience calving front variations at different time scales. While long-term changes are easy to

resolve using already available data products, our time series offers unique opportunities to analyze seasonal and sub-seasonal115

terminus changes. To quantify these calving front changes we apply the well-established rectilinear box method (Moon and

Joughin, 2008). Rather than using a single profile to measure advance or retreat this method adopts a rectilinear box, thus

accounting for uneven changes along the calving front. Figure 6 shows the method applied to our calving front time series for

Jakobshavn Isbræ which is separated here into a northern and a southern branch. The inferred calving front variation exhibits

a pronounced annual pattern combined with smaller sub-seasonal fluctuations. For comparison, the derived time series of the120
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Figure 6. Rectilinear box method applied to the ANN generated calving front time series for Jakobshavn Isbræ (west Greenland). The glacier,

which is separated into a northern and a southern branch, and the calving fronts are shown on the left. The corresponding time series are

depicted on the right. Here, calving front positions, expressed as a surface area, are marked by a dot. For the TUD product (black) solid lines

connect frontal positions of each year. Time series from the ESA-CCI product (blue) are shown for comparison. Landsat-8 image courtesy

of the U.S. Geological Survey.

manually delineated ESA CCI product is shown. Although both datasets agree very well when it comes to comparing singular

epochs the ESA-CCI time series does not reliably capture the temporal variation. This is particularly evident for the year 2014

when a whole annual cycle is missed by the manually delineated product.

Figure 7 presents twelve more examples of our ANN generated time series. Most of these glaciers exhibit pronounced

seasonal and sub-seasonal variations overlaid by a long-term signal. Except for Kangiata Nunaata Sermia (Fig. 7a), Ryder125

Glacier (Fig. 7b) and Hayes Glacier (Fig. 7h), all example glaciers are retreating during the analysed time period. Notably,

Zachariae Isstrøm and Humboldt Glacier show an area loss of about 120 km2 and 100 km2 respectively. Ryder Glacier (Fig. 7b)

and Nioghalvfjerdsbræ (Fig. 7d) are the only among the 23 glaciers in our study that do not undergo a pronounced seasonality.

In those cases, the calving front variation is characterized by a steady advance and the sporadic detachment of large kilometer-

sized icebergs. The date of detachment is precisely pinpointed by the time series. In the case of Nioghalvfjerdsbræ (Fig. 7d),130

the time series also separates two break-offs that occurred in close succession. Other glacier time series, like Hayes Glacier

(Fig. 7h), Tracy Glacier (Fig. 7j), Docker Smith Glacier (Fig. 7k) and Harald Moltke Bræ (Fig. 7l), reflect a change in calving

rate during our observation period. For Harald Moltke Bræ (Fig. 7l) the onset of this calving front retreat, starting 2019,

coincides with the end of its six year-long surging phase and has already been anticipated by Müller et al. (2021).
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Figure 7. Example time series generated by our ANN algorithm for twelve Greenland glaciers. For each glacier a satellite image (left),

containing the color-coded calving front trajectories, and the corresponding time series (right) are shown. Here, calving front positions are

marked by black dots and solid lines connecting entries each year. Note that the ordinate axis is scaled differently for each glacier. Landsat-8

imagery courtesy of the U.S. Geological Survey.
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Figure 8. Interaction between calving front variation and bedrock topography for (a) Ingia Isbræ, (b) Upernavik Isstrøm C, (c) Daugaard

Jensen Glacier and (d) Kangerdlugssuaq Glacier. Shown are (from left to right) a satellite image with calving front trajectories as well as a

marked profile, bedrock topography and color-coded calving front positions along this profile and the corresponding time series of calving

front variation. Note that the axis are scaled differently for each glacier. Landsat-8 imagery courtesy of the U.S. Geological Survey.

4 Discussion135

Changes in calving front position are, along with other observables like ice velocity and elevation change, part of a complex

feedback cycle between a glacier and its environment. In discussing our results, we present a first application of our temporally

high-resolution calving front information. In particular, we infer valuable insights into glacier dynamics by linking changes

in calving front position to bedrock topography. Figure 8 shows our calving front time series in relation to bedrock elevation,

taken from the BedMachine Greenland model (Morlighem, 2022), for four example glaciers. Profiles extend from point A to140

point B along a central flowline. The calving front of Ingia Isbræ (Fig. 8a) retreated from 2013 to the end of 2017 by 3.2 km

(8.6 km2 in area) with a pronounced seasonal pattern. This retreat is particularly rapid in 2017 and 2018. We suspect this is
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due to retrograde topography. Since 2018, the calving front is located in a topographic minimum. This seems to prevent a fast

retreat and significantly reduces the seasonal amplitude. In the case of Upernavik Isstrøm C (Fig. 8b), there was a rapid decline

in 2014 and 2015, which has slowed considerably since the end of 2015. This is probably a result of the prograde topography145

of the bedrock. In addition, the seasonal amplitude of the calving front change varies considerably, from a minimum of 1.7 km

(6.5 km2 in area) in 2020 to a maximum of 1.7 km (6.5 km2 in area) in 2019. This could be related to the prograde bedrock

slope, which leads to a floating and less stable glacier tongue during rapid glacier advance. The calving behavior of Daugaard

Jensen Glacier (Fig. 8c) is influenced by the abrupt change of bedrock slope near to the frontal position. An advance beyond

this point, from a slightly retrograde into a steeply prograde topography, results in a floating ice tongue. This influences calving150

behaviour, and in particular results in the calving of large tabular icebergs up to 8.2 km2 in size. The calving front change of

Kangerdlugssuaq Glacier (Fig. 8d) shows high seasonal amplitudes as well as a significant retreat from late 2016 to early 2018.

With the exception of 2017 and 2018, where we observe a sustained retreat, the seasonal amplitude remains almost constant at

around 4 km (21 km2 in area). Our time series does not show long-term calving front changes since 2018. Considering the bed

topography, it is apparent that the glacier front, which was at a stable position until late 2021, has the potential to retreat into a155

steeply retrograde topography. This retrograde topography continues for about 6 km upstream. If this tipping point is reached,

an accelerated retreat of the glaciers’ calving front location might be expected.

These examples further highlight the benefits of the temporally high-resolution calving front information. Long-term calving

front trends are often superimposed by seasonal variability and sub-seasonal fluctuations. A separation of these signals is crucial

for studying dynamic glacier changes and fully understand underlying processes.160

5 Conclusions

This study presents a deep learning based processing system for automatic delineation of calving front locations from multi-

spectral Landsat-8 imagery. Using three independent test datasets we validate the performance of our processing system. The

quality of the automatically extracted calving fronts is comparable to that of manually delineated calving fronts. By overcom-

ing challenging cloud, illumination and ice mélange conditions we make an important step forward to considerably enhancing165

both the temporal resolution as well as the coverage of our resulting time series. The time series derived by this processing

system resolve long-term, seasonal and sub-seasonal calving front variations. This clearly surpasses the potential of manually

delineated data products.

The presented method and the resulting data product addresses the needs of the glaciology community for a comprehensive

parameterization of glacier calving in Greenland. The presented example time series highlight the high temporal resolution170

achieved by our deep learning method. Especially for longer calving fronts, dense sampling is not attainable using manual

delineation. Thus, our time series provided for Humboldt Glacier, Zachariae Isstrøm and Nioghalvfjerdsbræ are, among many

others, are of unprecedented temporal resolution, resolving their sub-seasonal calving front variability for the first time.

Although the time series presented in this paper give only a selected and a rather narrow glimpse into the dynamics of these

glaciers, it is highly important to note that the demonstrated capability of automatically resolving the sub-seasonal calving front175
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variations is an important step forward towards a spatially comprehensive Greenland wide monitoring system. In conjunction

with other components concerning ice flow, elevation change, solid earth response and hydrological processes, this will open

up new opportunities to integratively assess, model and simulate dynamic ice sheet changes. Advancing towards this digital

twin of the Greenland Ice Sheet will improve our understanding of its evolution and its role within the broader Earth climate

system.180

Intelligent processing strategies, like deep ANN, will play a major role in shaping the future of glacier monitoring and

associated modelling tasks. This is especially true for analyzing the increasing amount of remote sensing imagery. Well-trained

and thoroughly validated ANN will be state-of-the-art for automated calving front delineation. The results presented in this

paper do not only reinforce existing efforts of deep learning based calving front detection but also lay the foundation for future

developments in this field.185
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Appendix A: Data

A1 Data source

The presented processing system is based on optical Landsat-8 imagery. We use the orthorectified and radiometrically calibrated

level 1 data products as provided by the United States Geological Survey (U.S. Geological Survey, 2023). Carrying two

scientific instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), Landsat-8 provides a190

particularly wide multispectral coverage. The eleven spectral bands comprise data from visible, near-infrared, short-wave

infrared and thermal infrared wavelengths, from 0,435 µm to 1,384 µm. With exception to the panchromatic band and the two

thermal bands, which have a spatial resolution of 15 m and 100 m respectively, all other bands have a resolution of 30 m. Apart

from band 9, which is outside an atmospheric window and, therefore, intended for atmospheric observations, all available

bands are used as input for our ANN. The integration of these multispectral bands leads to generally more accurate predictions195

than using conventional single-band inputs only, which has already been shown by Loebel et al. (2022). This is especially true

for difficult illumination and ice-melange conditions.

A2 Reference dataset

We use manually delineated calving front locations as reference data. For model training, we use 698 calving front positions

across 19 Greenland glaciers between 2013 and 2019. Glaciers are selected for their broad spatial distribution and diverse200

morphology as well as for different calving and ocean conditions. A spatial overview of all Greenland glaciers applied in

this study is given in Figure 2. To test the model we apply three different testing sets. The TUD testing dataset includes four

additional Greenland glaciers, Boydell and Drygalski Glacier at the Antarctic Peninsula, Storbreen Glacier in Svalbard as well

as Upsala Glacier in Patagonia. In total, the TUD testing set contains 200 calving front positions across 27 glaciers from 2020

and 2021. In addition to our own testing data set we use manually delineated calving fronts from the ESA-CCI (ENVEO, 2017)205

and the CALFIN (Cheng et al., 2021) product. Here, we use all available calving front positions for our selected Greenland

glaciers for which we find a corresponding Landsat-8 scene with less than 24 hours time difference. This results in additional

100 manually delineated calving front positions for the ESA-CCI and 110 for the CALFIN testing datasets.

Appendix B: Methods

B1 Pre-Processing210

To use the satellite data as input for the ANN requires pre-processing. In particular, we create stacked raster subsets from the

multispectral satellite bands and the manually delineated calving front locations. These subsets have dimensions of

512 px× 512 px with a unified 30 m ground sampling distance and are centered on the calving front of the respective glacier.

For each multispectral band we apply an image enhancement in form of a cumulative count cut, clipping the data between the

0.1 and 98 percentile, counteracting overexposure in our satellite imagery. Additionally, all satellite bands are then normalized215
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Figure B1. U-Net based model architecture used this study. Contracting sequences are composed of convolutions followed by batch normal-

ization (BatchNorm), a rectified linear unit (ReLU) and a max pooling operation. An expanding sequence is built from a concatenation from

the contracting path, convolutions followed by BatchNorm, a ReLU and an up-convolution. The specific dimensions are designated at the

top of the blocks.

to the range between 0 and 1 using an 8-bit quantization. Corresponding manually delineated calving front positions, given

either as a line string or polygon shape-file, are processed into binary raster masks segmenting land and glacier from ocean.

Altogether, one stacked raster subset includes nine satellite bands and a matching ground truth mask.

B2 Semantic image segmentation

To extract the calving front location from the input images we apply a convolutional neural network that performs a pixel-wise220

semantic image segmentation, separating a glacier-land class from a water class. In particular, we use a U-Net type architecture

introduced by Ronneberger et al. (2015). This architecture consists of a contracting path, resembling a typical convolutional

network where spatial resolution is reduced while feature information is increased, followed by an expanding path where

feature and spatial information are combined. The receptive field of a U-Net is defined by the number of contracting and

expanding blocks. As calving front extraction needs adequate spatial context (Heidler et al., 2021) in this study we enhance the225

U-Net by two additional resolution levels, i.e. from four to six. The applied processing architecture and the relevant dimensions

are shown in Figure B1.

Our model is fitted using the pre-processed training data. Before initializing the model training we select every fifth image of

the training dataset for internal validation. The remaining training data is augmented eightfold by rotating and flipping. Finally,

the resulting 6208 raster subsets are used for fitting the model. For this, we use randomized batches of size eight and apply the230

Adam optimization algorithm (Kingma and Ba, 2014) on a binary cross-entropy loss function for a total of 200 epochs. Final

model weights are selected based on the classification accuracy of the internal validation dataset.
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Table C1. Results of the accuracy assessment. The mean and median distance to manual delineation and the confusion matrix for the

glacier/land class are given. In addition, the standard deviation of the respective parameters is indicated. Example: Mean TP are all

glacier/land image pixels of the test dataset that are correctly classified on average across all 50 models.

Test dataset
Distance to manual delineation Confusion matrix for the glacier/land class

Mean (m) Median (m) Mean TP Mean TN Mean FP Mean FN

TUD 61.2± 7.5 28.3± 1.4 20917160± 96881 40922644± 39157 701361± 96881 85327± 39157

ESA-CCI 73.5± 3.3 43.6± 1.6

CALFIN 73.7± 2.9 45.9± 1.4

The ANN processing is implemented using the TensorFlow 2.4 library (Abadi et al., 2015). Model training is carried out on

an IBM Power 9 node and an NVIDIA V100 GPU with 32 GB high bandwidth memory. The training of one model requires

about twelve hours with a main memory utilization of 80 GB and an average GPU power consumption of 265 W.235

B3 Post-Processing

As output of the ANN output we derive a floating point number probability mask where each image pixel is assigned a

probability between 0 (water) and 1 (glacier and land). During post-processing we vectorize this probability mask using the

Geospatial Data Abstraction Library (GDAL) contour algorithm (GDAL/OGR contributors, 2020) with a threshold of 0.5.

Eventually, we extract the glacier’s calving front by intersecting the vectorized coastline trajectory with a static mask. This mask240

is created manually for each glacier and specifies a corridor of possible calving front locations. Calving fronts exceeding the

512 px× 512 px window are split into multiple independent predictions which are then averaged in the overlapping area before

vectorization. Applying this strategy, which is motivated by Baumhoer et al. (2019), Zachariae Isstrøm, Nioghalvfjerdsbræ and

Humboldt Glacier are split into two, three and seven separate overlapping predictions, respectively.

Appendix C: Binary classification metrics245

Although our model is fitted using pixel-wise binary cross-entropy the mean and median distances to manual delineation

form the main error metric to validate our model. The reason for this is that a high binary classification performance does

not necessarily lead to an accurate prediction of the calving front trajectory. The binary classification performance is most

important for pixels at the glacier front but less relevant for the rest of the image. Nevertheless, in Table C1 we specify,

along with the mean and median distance errors, the confusion matrix of our model accuracy assessment using the TUD test250

dataset. This confusion matrix enables to derive commonly used binary classification metrics like accuracy, precision, recall or

F1-Score making our results more comparable with those of already existing studies.
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Code and data availability. The following assets are published along with this article:

– The data product of automatically delineated calving front positions (format: ESRI shapefile), containing 9243 calving front positions

across 23 Greenland outlet glaciers, is available at http://dx.doi.org/10.25532/OPARA-208 (Loebel et al., 2023).255

– We provide a containerized implementation (platform: Docker) of the presented processing system. The software automatically extracts

calving front positions from Landsat-8 or Landsat-9 Level-1 data archives for glaciers used within this study or at user-defined coordi-

nates. This enables the analysis of glaciers that are outside our reference dataset or beyond the temporal frame of our study. The software

is available at https://github.com/eloebel/glacier-front-extraction (last access 24 March 2023) and

https://doi.org/10.5281/zenodo.7755774 (Loebel, 2023a).260

– Our implementation (software: Python 3) of the rectilinear box method is available at https://github.com/eloebel/rectilinear-box-method

(last access 24 March 2023) and https://doi.org/10.5281/zenodo.7738605 (Loebel, 2023b).
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